Abstract

The addition of plant residues and the appropriate management of arbuscular mycorrhizal (AM) symbioses have been tested in an acidic soil, an Andisol from Southern Chile, to ascertain whether these agro-technologies help plants to withstand potential mineral deficiency and the toxicities inherent to the low pH conditions. Firstly, the effects of legume (lupine) and non-legume (wheat) crop residues on some key root-soil interface activities (including AM development), on mineral acquisition by the plants, and on the yield of wheat growing in the test Andisol were investigated in a pot experiment under greenhouse conditions. Both lupine and wheat residues were added at a rate equivalent to 300 g m–2 to the natural soil. These organic amendments increased soil pH (wheat more than lupine), P availability and AM development (lupine more than wheat), plant performance and mineral acquisition (wheat more than lupine). Because of an increase in mycorrhizal activity, which appeared to be involved in the effect of the added crop (particularly lupine) residues, the role of the AM symbiosis was further investigated in a tailored inoculation assay, using a selected AM fungus (Glomus etunicatum), in interaction with lupine and wheat residues. A significant effect of AM inoculation on the reduction of Zn and Cu, and Mn and Al acquisition was demonstrated, which could be of interest in acid soils with regard to potential toxicity problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.