Abstract

Accurate quantification of protein-ligand interactions remains a key challenge to structure-based drug design. However, traditional machine learning (ML)-based methods based on handcrafted descriptors, one-dimensional protein sequences, and/or two-dimensional graph representations limit their capability to learn the generalized molecular interactions in 3D space. Here, we proposed a novel deep graph representation learning framework named InteractionGraphNet (IGN) to learn the protein-ligand interactions from the 3D structures of protein-ligand complexes. In IGN, two independent graph convolution modules were stacked to sequentially learn the intramolecular and intermolecular interactions, and the learned intermolecular interactions can be efficiently used for subsequent tasks. Extensive binding affinity prediction, large-scale structure-based virtual screening, and pose prediction experiments demonstrated that IGN achieved better or competitive performance against other state-of-the-art ML-based baselines and docking programs. More importantly, such state-of-the-art performance was proven from the successful learning of the key features in protein-ligand interactions instead of just memorizing certain biased patterns from data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.