Abstract

Southern rice black-streaked dwarf virus (SRBSDV) coat protein (P10) is the key protein required for viral transmission and host plant infection and is thus a promising target for anti-SRBSDV agent screening. In this study, P10 was obtained from Escherichia coli through cloning, expression, and purification. The antiviral agent Ningnanmycin was selected as control, and a series of antiviral compounds based on the structural scaffold of ferulic acid were analyzed. Size-exclusion chromatography analysis results showed that compound F27 can alter the aggregation of P10 proteins. Furthermore, fluorescence titration and microscale thermophoresis assay results indicated that F27 binds to P10 with KA of 5.75×105M−1 and KD of 7.81μM. The ligand- and receptor-based three-dimensional quantitative structure–activity analyses were performed to determine the requirements for the interaction between the carboxyl structures and P10s. On the basis of the obtained models and information, we provided insights regarding the design and optimization of novel molecules as anti-SRBSDV agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.