Abstract
The interaction trap method was used to isolate putative binding partners of Rad16/Pso5, a protein responsible for repair of silent DNA. One of the interactors found was Sgs1, a DNA helicase influencing the life span of Saccharomyces cerevisiae, with homology to the human BLM, WRN and RECQL4 proteins. Using the same fusion proteins from the two-hybrid screening, we show evidence that both proteins also interact in vitro. We tested isogenic strains, containing mutant alleles of the two genes in single and double mutant combination, for phenotypic similarity. Life span in sgs1Δ single and sgs1Δ rad16Δ double mutants is about 40% of that of WT, and the rad16/pso5Δ single mutant also had its life span reduced to 75%. Sensitivity to different mutagens, whose lesions are poorly repaired in rad16/pso5Δ mutants, was tested in sgs1Δ mutants. The sgs1Δ conferred sensitivity to MMS, H2O2 and was moderately sensitive to UV254nm (UVC) and 4-NQO. An epistatic interaction between rad16 and sgs1 mutations after UVC, 4-NQO and H2O2 was observed. Moreover, we found that in a top3 background, functional Sgs1p and Rad16p apparently channel MMS, 4-NQO and H2O2 induced lesions into aberrant DNA repair. Our results demonstrate that Sgs1 is not only involved in genome stability, somatic recombination and aging, but is also implicated, together with Rad16/Pso5, in the repair of specific DNA damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.