Abstract

Neuromuscular blocking drugs have a high affinity for muscarinic acetylcholine receptors in the heart atria and ileal smooth muscle. In experiments on homogenates, alcuronium, gallamine, pancuronium, tercuronium and ritebronium inhibited the binding of the muscarinic antagonist (3H)quinuclidinyl benzilate (QNB) to rat heart atria with IC50 values of 0.15-0.53 mumol X 1(-1) and to ileal longitudinal muscles with IC50 values of 0.12-0.45 mumol X 1(-1). d-Tubocurarine and decamethonium inhibited (3H)QNB binding to these tissues with IC50 values of 6.2-8.5 mumol X 1(-1). For each neuromuscular blocking drug, the IC50 values were virtually identical for (3H)QNB displacement in the homogenates of the atria and of the ileal muscle. Alcuronium and gallamine differed from the other blocking agents in that they produced less steep (3H)QNB displacement curves both in the atria and the ileal muscle; Hill coefficients for the binding of alcuronium and gallamine to atrial and ileal homogenates were lower than unity. On isolated atria, gallamine, pancuronium, ritebronium and tercuronium antagonized the inhibition of tension development caused by the muscarinic agonist, methylfurmethide, with Kd values which were of the same order of magnitude as the IC50 values for the displacement of (3H)QNB binding to homogenates; the Kd of alcuronium was 12.5 times higher. d-Tubocurarine and decamethonium did not antagonize the effects of methylfurmethide at concentrations up to 100 mumol X 1(-1). On isolated ileal longitudinal muscle, gallamine and pancuronium antagonized the effects of methylfurmethide with Kd values that were 53 times and 100 times higher than their respective Kd values in the atria.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.