Abstract
Background: COVID-19 has become a global threat. Since its first outbreak from Wuhan, China in December 2019, the SARS-CoV-2 virus has gone through structural changes arising due to mutations in its surface glycoprotein. These mutations have led to the emergence of different genetic variants threatening public health due to increased transmission and virulence. As new drug development is a long process, repurposing existing antiviral drugs with potential activity against SARS-CoV-2 might be a possible solution to mitigate the current situation. Methods: This study focused on utilizing molecular docking to determine the effect of potential drugs on several variants of concern (VOCs). The effect of various drugs such as baricitinib, favipiravir, lopinavir, remdesivir and dexamethasone, which might have the potential to treat SARS-CoV-2 infections as evident from previous studies, was investigated for different VOCs. Results: Remdesivir showed promising results for B.1.351 variant (binding energy: -7.3 kcal/mol) with residues Gln319 and Val503 facilitating strong binding. Favipiravir showed favorable results against B.1.1.7 (binding energy: -5.6 kcal/mol), B.1.351 (binding energy: -5.1 kcal/mol) and B.1.617.2 (binding energy: -5 kcal/mol). Molecular dynamics simulation for favipiravir/B.1.1.7 was conducted and showed significant results in agreement with our findings. Conclusions: From structural modeling and molecular docking experiments, it is evident that mutations outside the receptor binding domain of surface glycoprotein do not have a sharp impact on drug binding affinity. Thus, the potential use of these drugs should be explored further for their antiviral effect against SARS-CoV-2 VOCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.