Abstract
Synapses that reliably activate their postsynaptic targets typically release neurotransmitter with high probability, are not very sensitive to changes in calcium entry, and depress. We have determined the mechanisms that give rise to these characteristic features at the climbing fiber to Purkinje cell synapse. We find that saturation of presynaptic calcium entry, of presynaptic release, and of postsynaptic receptors combine to produce a postsynaptic response that is near maximal. Postsynaptic receptor saturation also accelerates recovery from depression, in part by accentuating a rapid calcium-dependent recovery phase. Thus, postsynaptic receptor saturation interacts with presynaptic mechanisms to produce highly reliable synapses that can effectively drive their targets even during sustained activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.