Abstract

Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.