Abstract

The interaction of menadione with reduced glutathione (GSH) led to a removal of menadione and formation of menadione-GSH conjugate and glutathione disulfide (GSSG). The changes in thiol level were essentially biphasic with an initial rapid decrease in GSH and appearance of GSSG (less than 1 min) followed by secondary less pronounced changes. The interaction of menadione and GSH caused an oxygen uptake and both superoxide anion radical and hydrogen peroxide were produced during the reaction, the amount dependent on the GSH/menadione ratio. Catalase did not protect against the initial decrease in GSH level but markedly inhibited the secondary changes while superoxide dismutase had little effect. These results suggest that the initial changes in thiol level are the result in part of a redox reaction between menadione and GSH as well as conjugate formation, whilst the secondary changes reflect conjugate formation and the activity of other oxidants such as hydrogen peroxide. The potential biological significance of this reaction was investigated using hepatocytes depleted of reduced pyridine nucleotides and thus not able to perform enzyme-catalyzed reduction of menadione. In these cells menadione induced GSSG formation at a rate similar to that observed in control cells. This suggests that quinone-induced oxidative challenge caused by the chemical interactions of a quinone and glutathione may have biological relevance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.