Abstract
Brachial artery flow-mediated dilation (BAFMD) is induced by hyperemic wall shear rate (WSR) following forearm ischemia. In older adults, there appears to be a reduced brachial hyperemic WSR and altered stimulus-response relationship compared with young adults. However, it is unclear if an altered forearm microvascular response to ischemia influences brachial hyperemic WSR in older adults. We determined associations between brachial hyperemic WSR and forearm skeletal muscle oxygen saturation in young and older adults. Healthy young (n = 17, 29 ± 7 yr) and older (n = 32, 65 ± 4 yr) adults participated in the study. BAFMD by a multigate spectral Doppler system and forearm skeletal muscle oxygen saturation by near-infrared spectroscopy were concurrently measured. When compared with the young, older adults showed reduced oxygen extraction kinetics (OE, 0.15 [0.12-0.17] vs. 0.09 [0.05-0.12]%s-1) and magnitude (So2deficit, 3,810 ± 1,420 vs. 2,723 ± 1,240%s) during ischemia, as well as oxygen resaturation kinetics (So2slope, 2.5 ± 0.7 vs. 1.7 ± 0.7%s-1) upon reperfusion (all P < 0.05). When OE in the young and So2slope in older adults were stratified by their median values, young adults with OE above the median had greater hyperemic WSR parameters compared with those below the median (P < 0.05), but So2slope in older adults did not show clear differences in hyperemic WSR parameters between those above/below the median. This study demonstrates that, in addition to a reduced microvascular response to ischemia, there may be a dissociation between microvascular response to ischemia and brachial hyperemic WSR in older adults, which may result in a further impairment of BAFMD in this cohort.NEW & NOTEWORTHY Microvascular response to ischemia and subsequent reperfusion is diminished in older adults compared with the young. Furthermore, there appears to be a dissociation between the microvascular response to ischemia and brachial hyperemic WSR in older adults, which may further disturb the BAFMD process in this cohort. A reduced BAFMD in older adults may be a result of multiple alterations occurring both at macro- and microcirculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.