Abstract

Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide–lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.