Abstract

A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.