Abstract

An experimental study was conducted to evaluate the effect of an unexpected postural perturbation during a lifting task. To investigate electromyographic responses in the erector spinae to a postural perturbation, simulating slipping, during an ongoing voluntary lifting movement. It was hypothesized that specific combinations of voluntary movement and postural perturbation present a situation in which injury caused by a rapid switch between conflicting motor commands can occur. Studies of postural perturbations have mainly focused on behavior during static tasks such as quiet, upright standing. To date, there are no published studies of the effect of a perturbation during an ongoing voluntary lifting movement. Subjects standing on a movable platform were exposed to random perturbations while lifting a 20-kg load. Muscle activity was recorded from flexor and extensor muscles of the trunk and hip. Trunk flexion angle in the sagittal plane was recorded with a video system. Perturbations forward were followed by an increased activity in erector spinae superimposed on the background activation present during the lift, indicating that both the voluntary and postural motor programs caused an activation of erector spinae. During backward perturbation, however, there was a sudden cessation of erector spinae activity followed by an extended period of rapid electromyographic amplitude fluctuations while the trunk was flexing, indicating an eccentric contraction of the erector spinae. This erratic behavior with large electromyographic amplitude fluctuations in the erector spinae after a backward slip during lifting may indicate a rapid switch between voluntary and postural motor programs that require conflicting functions of the back muscles. This may cause rapid force changes in load-carrying tissue, particularly in those surrounding the spine, thus increasing the risk of slip-and-fall-related back injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.