Abstract
<p>Traditionally, the interannual Tropical Atlantic variability (TAV) is thought to be governed by two air-sea coupled modes denoted as Meridional Mode (MM) and Equatorial Mode (EM), peaking in boreal spring and summer respectively. Several studies have proposed a possible connection between the MM and EM, but without reaching a consensus about its frequency, type and associated mechanisms. Remarkably, recent findings brought to light decadal changes in the structure, intensity and teleconnections of the EM along the observational record. In particular, new overlooked equatorial modes called ‘non-canonical EM’ and ‘Horse-Shoe mode’ have been reported, which exhibit significant sea surface temperature anomalies in the north tropical Atlantic region. This gives robustness to the connection between the boreal spring and summer interannual modes.</p><p>Here, using observational and CMIP6 model datasets, we demonstrate the existence of distinct interannual modes in the tropical Atlantic basin along the record. Furthermore, the emergence of these modes is not stationary on time and varies from some decades to the others.  In this study, using observations and coupled climate models we explore the connection between the MM and EM to generate the diverse of tropical Atlantic variability reported in previous works. Moreover, the air-sea mechanisms and ocean dynamics involved in the evolution of these modes and the role of the mean state in the connection between them is assessed.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.