Abstract

RuO2 is a conducting transition metal oxide that has unique redox properties to be used as heterogeneous catalyst for oxidation reactions as well as in electrocatalysis. Furthermore, it has been reported to be an excellent catalyst for the oxygen evolution reaction, a key step for obtaining energy from water through environmentally friendly processes. In this context, a detailed knowledge of the RuO2–water interface is important for a better understanding of the electrochemical process, the water oxidation reaction and some oxidative reactions involving RuO2. Here, we use periodic boundary condition DFT (PBE-D2) calculations to analyze the influence of the surface morphology and water coverage in the adsorption energies and degree of water deprotonation. We have considered the four nonpolar ((110), (011), (100), and (001)) most relevant surfaces and three degrees of water coverage: isolated molecules, half monolayer and full monolayer. Results indicate that three effects are crucial for determining the ad...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.