Abstract
Systemic hypoxia results in oxidative stress due to a change in the reactive oxygen species (ROS)-nitric oxide (NO) balance. These experiments explored two mechanisms for the altered ROS-NO balance: 1) decreased NO synthesis by NO synthase due to limited O(2) substrate availability and 2) increased superoxide generation. ROS levels and leukocyte adherence in mesenteric venules of rats during hypoxia were studied in the absence and presence of an NO donor [spermine NONOate (SNO)] and of the NO precursor L-arginine. We hypothesized that if the lower NO levels during hypoxia were due to O(2) substrate limitation, L-arginine would not prevent hypoxia-induced microvascular responses. Graded hypoxia (produced by breathing 15, 10, and 7.5% O(2)) increased both ROS (123 +/- 6, 148 +/- 11, and 167 +/- 3% of control) and leukocyte adherence. ROS levels during breathing of 10 and 7.5% O(2) were significantly attenuated by SNO (105 +/- 6 and 108 +/- 3%, respectively) and L-arginine (117 +/- 5 and 115 +/- 2%, respectively). Both interventions reduced leukocyte adherence by similar degrees. The fact that the effects of L-arginine were similar to those of SNO does not support the idea that NO generation is impaired in hypoxia and suggests that tissue NO levels are depleted by the increased ROS during hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.