Abstract
To provide conclusive evidence that sperm cells gain access to the perivitelline space exclusively through a laser-drilled opening. To assess the optimal size of the hole and to evaluate the efficacy of laser drilling in comparison with that of mechanical zona dissection. An interspecies model of human sperm cell that interacts with a laser-drilled or partially zona-dissected hamster oocytes. Penetration rate into the perivitelline space as related to the size of the opening (group A [5 microns], group B [10 microns], and group C [15 microns]) and to the sperm cell concentrations (1 x 10(6), 5 x 10(6), and 10 x 10(6) cells/mL) used for insemination. For each sperm cell concentration, the penetration rate into the perivitelline space was lowest for group A followed by group C and highest for group B. When penetration was compared for each hole size, it was found that sperm concentration had no effect on the rate of penetration in groups A and C but significantly affected this rate in group B. The highest penetration rate of 73% was observed with a concentration of 10 x 10(6) cell/mL and declined to 58% and 23% at 5 x 10(6) cell/mL and 1 x 10(6) cell/mL, respectively. Oocytes drilled by laser (10-microns hole) demonstrated a significantly higher penetration rate when compared with those treated by partial zona dissection (73% versus 20% and 58% versus 21% for sperm densities of 10 x 10(6) cells/mL and 5 x 10(6) cells/mL, respectively). Human sperm cells gain access into the perivitelline space of hamster oocytes exclusively through a hole drilled by an argon fluoride excimer laser. An opening of 10 microns was found to yield optimal results. Laser drilling of the zona pellucida seems to be superior to that of mechanical slitting in terms of sperm oolema interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.