Abstract

The head-on collision between electrostatic shocks is studied via multi-dimensional particle-in-cell simulations. A strong magnetic field develops after the interaction, which causes the shock velocities to drop significantly. This transverse magnetic field is generated by the Weibel instability, which is driven by pressure anisotropies due to longitudinal electron heating while the shocks approach each other. The possibility to explore the physics underpinning the shock collision in the laboratory with current laser facilities is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.