Abstract
The rhinal cortices play a critical role in high-order perceptual/mnemonic functions and constitute the main route for impulse traffic to and from the hippocampus. However, previous work has revealed that neocortical stimuli that activate a large proportion of perirhinal neurons are unable to discharge entorhinal cells. In search of mechanisms that might facilitate impulse transfer from the neocortex to the entorhinal cortex, we have examined changes in excitability produced by activation of the lateral amygdala (LA) in isoflurane-anesthetized animals. LA stimulation activated a large proportion of peri- and entorhinal neurons. However, conditioning LA stimuli did not increase the ability of neocortical inputs to activate entorhinal cells even though such pairing produced marked increases in neocortically evoked field potentials and orthodromic firing in the perirhinal cortex. Moreover, increased neocortically evoked perirhinal field potentials and unit responses persisted when the conditioning LA shock was replaced by another neocortical stimulus at the same or at a different site as the testing shock. This perirhinal paired-pulse facilitation (PPF) was maximal with interstimulus intervals of approximately 100 ms. Intracellular recordings of perirhinal neurons revealed that the PPF was generally associated with a rapid shift in the balance between inhibition and excitation, leading to an overall increase in perirhinal responsiveness. The significance of these findings for the role of the perirhinal cortex is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.