Abstract
Amyloidogenic proteins (Abeta peptide) in Alzheimer's disease (AD) and alpha-synuclein (alpha-Syn) in Parkinson's disease (PD) are typically soluble monomeric precursors, which undergo remarkable conformational changes and culminate in the form of aggregates in diseased condition. Overlap of clinical and neuropathological features of both AD and PD are observed in dementia with Lewy body (DLB) disease, the second most common form of dementia after AD. The identification of a 35-amino acid fragment of alpha-Syn in the amyloid plaques in DLB brain have raised the possibility that Abeta and alpha-Syn interact with each other. In this report, the molecular interaction of alpha-Syn with Abeta40 and/or Abeta42 are investigated using multidimensional NMR spectroscopy. NMR data in the membrane mimic environment indicate specific sites of interaction between membrane-bound alpha-Syn with Abeta peptide and vice versa. These Abeta-alpha-Syn interactions are demonstrated by reduced amide peak intensity or change in chemical shift of amide proton of the interacting proteins. Based on NMR results, the plausible molecular mechanism of overlapping pathocascade of AD and PD in DLB due to interactions between alpha-Syn and Abeta is described. To the best of our knowledge, it is the first report using multidimensional NMR spectroscopy that elucidates molecular interactions between Abeta and alpha-Syn which may lead to onset of DLB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.