Abstract

The effects of long-range interactions in quantum transport are still largely unexplored, mainly due to the difficulty of devising efficient embedding schemes. In this work we present a substantial progress in the interacting resonant level model by reducing the problem to the solution of Kadanoff-Baym-like equations with a correlated embedding self-energy. The method allows us to deal with short- and long-range interactions and is applicable from the transient to the steady-state regime. Furthermore, memory effects are consistently incorporated and the results are not plagued by negative densities or nonconservation of the electric charge. We employ the method to calculate densities and currents with long-range interactions appropriate to low-dimensional leads, and show the occurrence of a jamming effect, which drastically reduces the screening time and suppresses the zero-bias conductance. None of these effects are captured by short-range model interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.