Abstract

Phase-resolved transient grating spectroscopy in semiconductor quantum wells has been shown to be a powerful technique for measuring the electron-hole drag resistivity ρ(eh), which depends on the Coulomb interaction between the carriers. In this Letter we develop the interacting drift-diffusion theory, from which ρ(eh) can be determined, given the measured mobility of an electron-hole grating. From this theory we predict a crossover from a high-excitation-density regime, in which the mobility has the "normal" positive value, to a low-density regime, in which Coulomb drag dominates and the mobility becomes negative. At the crossover point, the mobility of the grating vanishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.