Abstract
This study analyzes the raindrop size distribution (RSD) characteristics over New Delhi by dividing the year into three seasons: PreM (March–May), monsoon (June–September), and PostM (October–February). Data from a Joss-Waldvogel Disdrometer, installed at IITM New Delhi, Rajendra Nagar, was used for three years (2021–2023). The observed raindrop spectra were fitted with three-parameter Gamma functions to obtain the RSD. ERA-5 and satellite data were also employed to establish atmospheric and cloud properties for the three seasons. The RSD for the monsoon season shows the highest concentration of midsize (1–3 mm diameter) drops and the highest mean rain rate. PostM has the least concentration of midsize and large (diameter >3 mm) drops. General statistics of rain integral parameters reveal high variability in rain rate (R) and mass-weighted mean diameter (Dm) values during the monsoon season. The mu-lambda scatter plots show considerable differences among the three seasons, indicating slightly distinct rainfall mechanisms in the three seasons. Z-R relations of the form Z = aRb were derived, with the highest coefficient (a) values observed for the PreM precipitation. The exponent (b) is found to be greater than unity in all three seasons. Rainfall was stratified based on rain rate. RSD gets broader with increasing R. Large drops are not found appreciably in the spectrum for R < 20 mm/h. A notable disparity between convective and stratiform RSD is evident. The values of rain integral parameters show considerable differences between the convective and stratiform regimes. A higher fraction of large drops is found for the stratiform rainfall in the PreM season compared to the other two seasons. CAPE, water vapor, surface temperature, and surface winds were higher during PreM and monsoon months compared to PostM. The distribution of differential temperature (δT) indicates that clouds with significant depth are found in PreM and monsoon seasons but are often lacking during PostM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.