Abstract

Excitation of the 4f3 ion Nd3+ in hexafluoroelpasolite lattices by synchrotron radiation of wavelength approximately 185 nm leads to fast 4f(2)5d --> 4f3 emission below 52,630 cm(-1) and slower 4f3 --> 4f3 emission from the luminescent states (4)F(3/2) gamma8u (11 524 cm(-1)) and 2G2(9/2) gamma8u (approximately 47,500 cm(-1)). The near-infrared emission is well-resolved, and a clear interpretation of the 4I(9/2) crystal field levels and of the one-phonon vibronic sideband is given. The excitation spectrum of the 2G2(9/2) emission enables clarification of the structure of the 4f(2)5d configuration (which extends from approximately 52,000 to 128,000 cm(-1)). Detailed energy level and intensity calculations have been performed, which provide simulations of the d-f emission and the f-d excitation spectra in good agreement with experiment. It is interesting that although the 4f3 2G2(9/2) gamma8u --> 4f3 4I(J) transitions are very weak in intensity compared with transitions terminating upon higher multiplet terms, most of the 4f(2)5d (3H) 4I(9/2) gamma8g --> 4f3 emission intensity resides in the transitions to 4I(J).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.