Abstract

In this work, the intensity noise transfer properties of a two-stage single-frequency fiber amplifier at 1µm are systematically investigated in the frequency domain. By applying an artificial modulation signal to the driving current of the first- and second-stage pump sources, the pump and signal transfer functions of the second-stage amplifier are experimentally measured from 10Hz to 100kHz. By associating the theoretical model, the effects of pump power, the operating wavelength, and the absorption coefficient of the gain fiber on the pump and signal transfer properties are analyzed based on the experimental measurements. It turns out that the gain dynamics of the last-stage amplifier play an important role in determining the noise performances of the final amplified laser. Because the pump and signal transfer functions essentially behave as a low pass and damped high pass filter, the pump intensity noise of the last-stage amplifier dominates the amplifier system's overall noise performance. In addition, the effects of amplified spontaneous emission (ASE) on the intensity noise transfer properties are nontrivial, although it is not included in the theoretical model. It is believed that the current work provides a useful guideline for optimizing the design of high-power single-frequency fiber amplifiers with low-intensity noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.