Abstract

An experimental study was conducted on the spatial distributions of hydrogen emission intensities from low-pressure plasmas generated by laser ablation of zircaloy-4 and black stone targets in nitrogen and helium ambient gases. In addition to confirming the previously observed intensity enhancement effect in ambient helium gas, the hydrogen and helium emission intensities measured along the plasma expansion direction revealed remarkable extended spatial distributions featuring unexpected maxima near the far end of the plasma where the available shock-wave generated thermal excitation energy should have been significantly reduced. This “anomalous” feature necessarily implied the presence of an additional excitation process beside the well known shock-wave excitation process which is responsible for the plasma emission of heavy atoms in low-pressure ambient gas. Further analysis of the data led to a suggested physical mechanism explaining the possible contribution of a helium metastable excited state to the unusual phenomenon observed in this experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.