Abstract
Intense pulsed D–D neutron emission with rates of >1010 n/s during the pulse, pulse widths of approximately hundreds of nanoseconds and neutron yields of greater than 10 000 per pulse, are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO3 crystal that provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compares well with theory. Results show neutron output per pulse that scales with voltage as V∼1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO3 crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof of principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work and notably increase the potential applications of pyroelectric based neutron generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.