Abstract
Hypertension is one of the major causes of heart cerebrovascular diseases. With a good accumulation of hypertension clinical data on hand, research on hypertension's ZHENG differentiation is an important and attractive topic, as Traditional Chinese Medicine (TCM) lies primarily in “treatment based on ZHENG differentiation.” From the view of data mining, ZHENG differentiation is modeled as a classification problem. In this paper, ML-kNN—a multilabel learning model—is used as the classification model for hypertension. Feature-level information fusion is also used for further utilization of all information. Experiment results show that ML-kNN can model the hypertension's ZHENG differentiation well. Information fusion helps improve models' performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evidence-Based Complementary and Alternative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.