Abstract

Mesh partitioning and parts extraction have become key ingredients for many mesh manipulation applications both manual and automatic. In this paper, we present an intelligent scissoring operator for meshes which supports both automatic segmentation and manual cutting. Instead of segmenting the mesh by clustering, our approach concentrates on finding and defining the contours for cutting. This approach is based on the minima rule, which states that human perception usually divides a surface into parts along the contours of concave discontinuity of the tangent plane. The technique uses feature extraction to find such candidate feature contours. Subsequently, such a contour can be selected either automatically or manually, or the user may draw a 2D line to start the scissoring process. The given open contour is completed to form a loop around a specific part of the mesh, and this loop is used as the initial position of a 3D geometric snake. The snake moves by relaxation until it settles to define the final scissoring position. This process uses several fundamental geometric mesh attributes, such as curvature and centricity, and enables both automatic segmentation and an easy-to-use intelligent-scissoring operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.