Abstract

ABSTRACT To take advantage of ultrasonic-based non-destructive testing (NDT) and data-driven intelligent defect diagnosis, the current study proposes a feature tensor classifier based on multi-source ultrasonic fusion, to enhance the defect diagnosis adaptability and reliability for gas-insulated switchgear (GIS) basin insulator. First, multi-source ultrasonic signals are acquired by finite element modelling (FEM), describing the healthy states of the GIS basin insulator completely. Second, time of flight (Tof)-featured tensors are expressed by wavelet transform (WT), and used to create the datasets. Third, a deep learning-based feature tensor classifier is proposed, and concerned training, validation, and testing processes are carried out. Finally, the effectiveness of feature tensor extraction is evaluated, and the anti-noise performance of the Tof-featured tensor classifier is verified. The main contributions indicate that the Tof-featured tensor classifier can realise excellent diagnosis performance, the average accuracy is, respectively, 90.53%, 99.75%, and 100% in training, validation, and testing sets, while the signal tensor classifier has poor performance. In addition, three other noised datasets are applied, and the result shows that the anti-noise performance of the Tof-featured tensor classifier is feasible, when SNR is greater than 1 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.