Abstract
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a multi-layer perceptron neural network. Feature vector which is one of the most significant parameters to design an appropriate neural network was innovated by standard deviation of wavelet packet coefficients. The gear conditions were considered to be normal gearbox and slight- and medium-worn and broken-teeth gears faults and a general bearing fault which were five neurons of output layer with the aim of fault detection and identification. A downscaled 2-layer multi-layer perceptron neural-network-based system with great accuracy was designed to carry out the task. In this research, vibration signals were recognised as the most reliable source to extract the feature vector which were synchronised by piecewise cubic hermite interpolation (PCHI) and pre-processed using the standard deviation of wavelet packet coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.