Abstract

To propose a computerized system utilizing multiscene analysis based on a support vector machine (SVM) and convolutional neural network (CNN) to assess cardiotocography (CTG) intelligently. We retrospectively collected 2542 CTG records of singleton pregnancies delivered at the maternity ward of the First Affiliated Hospital of Xi'an Jiaotong University from October 10, 2020, to August 7, 2021. CTG records were divided into five categories (baseline, variability, acceleration, deceleration, and normality). Apart from the category of normality, the other four different categories of abnormal data correspond to four scenes. Each scene was divided into training and testing sets at 9:1 or 7:3. We used three computer algorithms (dynamic threshold, SVM, and CNN) to learn and optimize the system. Accuracy, sensitivity, and specificity were performed to evaluate performance. The global accuracy, sensitivity, and specificity of the system were 93.88%, 93.06%, and 94.33%, respectively. In acceleration and deceleration scenes, when the convolution kernel was 3, the test data set reached the highest performance. The multiscene research model using SVM and CNN is a potential effective tool to assist obstetricians in classifying CTG intelligently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.