Abstract
Integrin-linked kinase (ILK) is a highly conserved serine-threonine protein kinase involved in cell-extracellular matrix interactions, cytoskeletal organization and cell signaling. Overexpression of ILK in epithelial cells leads to anchorage-independent growth with increased cell cycle progression. Previously, we have shown that ILK upregulation strongly correlates with melanoma progression, invasion and inversely correlates with 5-year survival of melanoma patients. However, the molecular mechanism by which ILK enhances melanoma progression is currently unknown. In the present study, we found that proangiogenic molecule interleukin-6 (IL-6) is the downstream target of ILK in melanoma cells. ILK overexpression increased IL-6, whereas silencing of ILK suppressed IL-6 expression at both messenger RNA and protein levels. ILK also altered the activity and subcellular localization of nuclear factor-kappaB (NF-κB) subunit p65. We further found that ILK enhanced the IL-6 gene transcription by promoting the binding of NF-κB p65 to IL-6 promoter. Moreover, ILK overexpression in melanoma cells enhanced the tube-forming ability of endothelial cells in vitro and microvessel formation in vivo. ILK-induced tube and blood vessel formation of endothelial cells was significantly reduced upon IL-6 inhibition in ILK-overexpressing melanoma cells. To delineate the mechanism by which ILK-induced IL-6 production can enhance angiogenesis, further analysis of the downstream targets of IL-6 signaling showed an increased activity of the signal transducer and activator of transcription 3 (STAT3) in ILK-overexpressing cells. As STAT3 binds to vascular endothelial growth factor (VEGF) promoter, we found that VEGF levels were elevated in ILK-overexpressing cells and declined upon transfection of IL-6 small interfering RNA, suggesting that ILK may regulate VEGF expression through IL-6 pathway by activating STAT3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.