Abstract

IR, Raman and other separation-free and label-free spectroscopic techniques have been the promising methods for the rapid and low-cost quality control of complex mixtures such as food and herb. However, as the overlapped signals from different ingredients usually make it difficult to extract useful information, chemometrics tools are often needed to find out spectral features of interest. With designed perturbations, two-dimensional correlation spectroscopy (2DCOS) is a powerful technique to resolve the overlapped spectral bands and enhance the apparent spectral resolution. In this research, the integrative two-dimensional correlation spectroscopy (i2DCOS) is defined for the first time overcome some disadvantages of synchronous and asynchronous correlation spectra for identification. The integrative 2D correlation spectra weight the asynchronous cross peaks by the corresponding synchronous cross peaks, which combines the signal-to-noise ratio advantage of synchronous correlation spectra and the spectral resolution advantage of asynchronous correlation spectra. The feasibility of the integrative 2D correlation spectra for the quality control of complex mixtures is examined by the identification of adulterated Fritillariae Bulbus powders. Compared with model-based pattern recognition and multivariate calibration methods, i2DCOS can provide intuitive identification results but not require the number of samples. The results show the potential of i2DCOS in the intuitive quality control of herbs and other complex mixtures, especially when the number of samples is not large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.