Abstract
Biomarkers are currently widely used to diagnose diseases, monitor treatments, and evaluate potential drug candidates. Research of differential Omics accelerate the advancements of biomarkers' discovery. By extracting biological knowledge from the 'omics' through integration, integrative system biology creates predictive models of cells, organs, biochemical processes and complete organisms, in addition to identifying human disease biomarkers. Recent development in high-throughput methods enables analysis of genome, transcriptome, proteome, and metabolome at an unprecedented scale, thus contributing to the deluge of experimental data in numerous public databases. Several integrative system biology approaches have been developed and applied to the discovery of disease biomarkers from databases. In this review, we highlight several of these approaches and identify future steps in the context of the field of integrative system biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.