Integrative genomic characterization of five Pediococcus acidilactici strains reveals differing probiotic safety profiles
The increasing use of probiotics in livestock necessitates rigorous safety assessments to mitigate risks such as their inadvertent contribution to antimicrobial resistance (AMR) and horizontal gene transfer (HGT). This study employs whole-genome sequencing using both long-read (GridION, Oxford Nanopore Technologies) and short-read (Illumina, San Diego, CA, USA) platforms to assess the genomic and plasmidome profiles of five Thai strains of Pediococcus acidilactici, that previously have been evaluated for probiotic potential in livestock. Our comprehensive analysis identified genes encoding AMR, virulence factors, and probiotic-related genes. Notably, strains AF2519 and AF2019 harbored plasmid-borne tet(M) and erm(B) genes, with tet(M) embedded in a novel composite genetic arrangement flanked by mobile elements, suggesting historical recombination and altered mobility potential. Strains IAF6519, IAF5919, and P72N, free from plasmid-borne AMR genes, emerged as safer candidates, lacking virulence genes. Phenotypic tests revealed discrepancies with genomic data; for instance, AF2019 was resistant to clindamycin without detectable genes, and showed susceptibility to tetracycline despite the presence of tet(M). The absence of complete transfer machinery in AF2519 and AF2019 suggests a reduced HGT risk. These findings underscore the importance of integrating genomic and phenotypic approaches in probiotic safety evaluations. The presence of plasmid-borne AMR genes in certain strains advises caution in their use, impacting probiotic selection and regulatory compliance in agriculture. This research informs policies and best practices for safe probiotic deployment, ensuring both efficacy and safety.
172
- 10.1128/aac.00580-10
- Sep 20, 2010
- Antimicrobial Agents and Chemotherapy
2578
- 10.1099/ijsem.0.000760
- Nov 9, 2015
- International Journal of Systematic and Evolutionary Microbiology
723
- 10.1038/s41592-020-00971-x
- Oct 5, 2020
- Nature methods
250
- 10.1155/2014/927268
- Jan 1, 2014
- BioMed Research International
15
- 10.1051/ebr:2003010
- Jul 1, 2003
- Environmental Biosafety Research
53
- 10.3389/fvets.2021.687071
- Jul 1, 2021
- Frontiers in Veterinary Science
7
- 10.3390/microorganisms11071649
- Jun 24, 2023
- Microorganisms
35
- 10.1038/s41598-021-91427-5
- Jun 8, 2021
- Scientific Reports
23
- 10.3390/microorganisms11041034
- Apr 15, 2023
- Microorganisms
228
- 10.1093/bib/bbx081
- Jul 26, 2017
- Briefings in Bioinformatics
- Research Article
- 10.1371/journal.pone.0332506
- Sep 30, 2025
- PloS one
The increasing use of probiotics in livestock necessitates rigorous safety assessments to mitigate risks such as their inadvertent contribution to antimicrobial resistance (AMR) and horizontal gene transfer (HGT). This study employs whole-genome sequencing using both long-read (GridION, Oxford Nanopore Technologies) and short-read (Illumina, San Diego, CA, USA) platforms to assess the genomic and plasmidome profiles of five Thai strains of Pediococcus acidilactici, that previously have been evaluated for probiotic potential in livestock. Our comprehensive analysis identified genes encoding AMR, virulence factors, and probiotic-related genes. Notably, strains AF2519 and AF2019 harbored plasmid-borne tet(M) and erm(B) genes, with tet(M) embedded in a novel composite genetic arrangement flanked by mobile elements, suggesting historical recombination and altered mobility potential. Strains IAF6519, IAF5919, and P72N, free from plasmid-borne AMR genes, emerged as safer candidates, lacking virulence genes. Phenotypic tests revealed discrepancies with genomic data; for instance, AF2019 was resistant to clindamycin without detectable genes, and showed susceptibility to tetracycline despite the presence of tet(M). The absence of complete transfer machinery in AF2519 and AF2019 suggests a reduced HGT risk. These findings underscore the importance of integrating genomic and phenotypic approaches in probiotic safety evaluations. The presence of plasmid-borne AMR genes in certain strains advises caution in their use, impacting probiotic selection and regulatory compliance in agriculture. This research informs policies and best practices for safe probiotic deployment, ensuring both efficacy and safety.
- Research Article
64
- 10.1128/msphere.00452-21
- Jul 7, 2021
- mSphere
ABSTRACTProphages are often involved in host survival strategies and contribute toward increasing the genetic diversity of the host genome. Prophages also drive horizontal propagation of various genes as vehicles. However, there are few retrospective studies contributing to the propagation of antimicrobial resistance (AMR) and virulence factor (VF) genes by prophage. We extracted the complete genome sequences of seven pathogens, including ESKAPE bacteria and Escherichia coli from a public database, and examined the distribution of both the AMR and VF genes in prophage-like regions. We found that the ratios of AMR and VF genes greatly varied among the seven species. More than 70% of Enterobacter cloacae strains had VF genes, but only 1.2% of Klebsiella pneumoniae strains had VF genes from prophages. AMR and VF genes are unlikely to exist together in the same prophage region except in E. coli and Staphylococcus aureus, and the distribution patterns of prophage types containing AMR genes are distinct from those of VF gene-carrying prophage types. AMR genes in the prophage were located near transposase and/or integrase. The prophage containing class 1 integrase possessed a significantly greater number of AMR genes than did prophages with no class 1 integrase. The results of this study present a comprehensive picture of AMR and VF genes present within, or close to, prophage-like elements and different prophage patterns between AMR- or VF-encoding prophage-like elements.IMPORTANCE Although we believe phages play an important role in horizontal gene transfer in exchanging genetic material, we do not know the distribution of the antimicrobial resistance (AMR) and/or virulence factor (VF) genes in prophages. We collected different prophage elements from the complete genome sequences of seven species—Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli—and characterized the distribution of antimicrobial resistance and virulence genes located in the prophage region. While virulence genes in prophage were species specific, antimicrobial resistance genes in prophages were highly conserved in various species. An integron structure was detected within specific prophage regions such as P1-like prophage element. Maximum of 10 antimicrobial resistance genes were found in a single prophage region, suggesting that prophages act as a reservoir for antimicrobial resistance genes. The results of this study show the different characteristic structures between AMR- or VF-encoding prophages.
- Research Article
52
- 10.1016/j.jhazmat.2019.121266
- Sep 20, 2019
- Journal of Hazardous Materials
Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health
- Research Article
28
- 10.1128/aem.00659-21
- May 14, 2021
- Applied and Environmental Microbiology
Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.
- Research Article
- 10.1016/j.scitotenv.2025.179353
- May 1, 2025
- The Science of the total environment
Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment.
- Research Article
14
- 10.3390/biology11020152
- Jan 18, 2022
- Biology
Simple SummaryWorldwide, antimicrobial resistance (AMR) is of major concern for human and animal health since infections with multidrug-resistant bacteria are often more challenging and costly. In the family Staphyloccocaceae, the species Staphylococcusaureus in particular was reported to cause severe infections. Although most of the other Staphylococcaceae members were not shown to cause severe illnesses, the transmission of AMR genes to harmful species might take place. Therefore, the monitoring of AMR potential in different environments is of high relevance. Mammaliicocci on dairy farms might represent such an AMR gene reservoir. Thus, in this study, the AMR potential of mammaliicocci isolates from German dairy farms was investigated. Whole-genome sequencing (WGS) of the isolates was conducted to evaluate the phylogenetic relationship of the isolates and analyze AMR genes. In addition, antimicrobial susceptibility testing was performed to compare the AMR genotype with the phenotype. It turned out that mammaliicocci may harbor large numbers of different AMR genes and exhibit phenotypic resistance to various antibiotics. Since some AMR genes are likely located on mobile genetic elements, such as plasmids, AMR gene transmission between members of the Staphylococcaceae family might occur.Mammaliicocci might play a major role in antimicrobial resistance (AMR) gene transmission between organisms of the family Staphylococcaceae, such as the potentially pathogenic species Staphylococcus aureus. The interest of this study was to analyze AMR profiles of mammaliicocci from German dairy farms to evaluate the AMR transmission potential. In total, 65 mammaliicocci isolates from 17 dairy farms with a history of MRSA detection were analyzed for AMR genotypes and phenotypes using whole genome sequencing and antimicrobial susceptibility testing against 19 antibiotics. The various genotypic and phenotypic AMR profiles of mammaliicocci from German dairy farms indicated the simultaneous occurrence of several different strains on the farms. The isolates exhibited a non-wildtype phenotype to penicillin (58/64), cefoxitin (25/64), chloramphenicol (26/64), ciprofloxacin (25/64), clindamycin (49/64), erythromycin (17/64), fusidic acid (61/64), gentamicin (8/64), kanamycin (9/64), linezolid (1/64), mupirocin (4/64), rifampicin (1/64), sulfamethoxazol (1/64), streptomycin (20/64), quinupristin/dalfopristin (26/64), tetracycline (37/64), tiamulin (59/64), and trimethoprim (30/64). Corresponding AMR genes against several antimicrobial classes were detected. Linezolid resistance was associated with the cfr gene in the respective isolate. However, discrepancies between genotypic prediction and phenotypic resistance profiles, such as for fusidic acid and tiamulin, were also observed. In conclusion, mammaliicocci from dairy farms may carry a broad variety of antimicrobial resistance genes and exhibit non-wildtype phenotypes to several antimicrobial classes; therefore, they may represent an important source for horizontal gene transfer of AMR genes to pathogenic Staphylococcaceae.
- Research Article
10
- 10.1186/s12866-023-02975-x
- Aug 18, 2023
- BMC Microbiology
IntroductionWhole genome sequencing (WGS) of bacterial isolates can be used to identify antimicrobial resistance (AMR) genes. Previous studies have shown that genotype-based AMR has variable accuracy for predicting carbapenem resistance in carbapenem-resistant Enterobacterales (CRE); however, the majority of these studies used short-read platforms (e.g. Illumina) to generate sequence data. In this study, our objective was to determine whether Oxford Nanopore Technologies (ONT) long-read WGS would improve detection of carbapenem AMR genes with respect to short-read only WGS for nine clinical CRE samples. We measured the minimum inhibitory breakpoint (MIC) using two phenotype assays (MicroScan and ETEST) for six antibiotics, including two carbapenems (meropenem and ertapenem) and four non-carbapenems (gentamicin, ciprofloxacin, cefepime, and trimethoprim/sulfamethoxazole). We generated short-read data using the Illumina NextSeq and long-read data using the ONT MinION. Four assembly methods were compared: ONT-only assembly; ONT-only assembly plus short-read polish; ONT + short-read hybrid assembly plus short-read polish; short-read only assembly.ResultsConsistent with previous studies, our results suggest that the hybrid assembly produced the highest quality results as measured by gene completeness and contig circularization. However, ONT-only methods had minimal impact on the detection of AMR genes and plasmids compared to short-read methods, although, notably, differences in gene copy number differed between methods. All four assembly methods showed identical presence/absence of the blaKPC-2 carbapenemase gene for all samples. The two phenotype assays showed 100% concordant results for the non-carbapenems, but only 65% concordance for the two carbapenems. The presence/absence of AMR genes was 100% concordant with AMR phenotypes for all four non-carbapenem drugs, although only 22%—50% sensitivity for the carbapenems.ConclusionsOverall, these findings suggest that the lack of complete correspondence between CRE AMR genotype and phenotype for carbapenems, while concerning, is independent of sequencing platform/assembly method.
- Research Article
24
- 10.1016/j.gpb.2020.12.002
- Oct 1, 2020
- Genomics, Proteomics & Bioinformatics
Plasmids remain important microbial components mediating the horizontal gene transfer (HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strategy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assembled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to β-lactam, fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns), insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs were linked to MGEs, allowing for the establishment of a relationship network between MGEs and/or ARGs that can be used to describe the dissemination of resistance by mobile elements. Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B, ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multicopy composite transposition event was illustrated by tracing its flanking 8-bp target site duplications (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complexity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT profiles.
- Research Article
6
- 10.3390/antibiotics11101400
- Oct 12, 2022
- Antibiotics (Basel, Switzerland)
Recent advances and lower costs in rapid high-throughput sequencing have engendered hope that whole genome sequencing (WGS) might afford complete resistome characterization in bacterial isolates. WGS is particularly useful for the clinical characterization of fastidious and slow-growing bacteria. Despite its potential, several challenges should be addressed before adopting WGS to detect antimicrobial resistance (AMR) genes in the clinical laboratory. Here, with three distinct ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), different approaches were compared to identify best practices for detecting AMR genes, including: total genomic DNA and plasmid DNA extractions, the solo assembly of Illumina short-reads and of Oxford Nanopore Technologies (ONT) long-reads, two hybrid assembly pipelines, and three in silico AMR databases. We also determined the susceptibility of each strain to 21 antimicrobials. We found that all AMR genes detected in pure plasmid DNA were also detectable in total genomic DNA, indicating that, at least in these three enterobacterial genera, the purification of plasmid DNA was not necessary to detect plasmid-borne AMR genes. Illumina short-reads used with ONT long-reads in either hybrid or polished assemblies of total genomic DNA enhanced the sensitivity and accuracy of AMR gene detection. Phenotypic susceptibility closely corresponded with genotypes identified by sequencing; however, the three AMR databases differed significantly in distinguishing mobile dedicated AMR genes from non-mobile chromosomal housekeeping genes in which rare spontaneous resistance mutations might occur. This study indicates that each method employed in a WGS workflow has an impact on the detection of AMR genes. A combination of short- and long-reads, followed by at least three different AMR databases, should be used for the consistent detection of such genes. Further, an additional step for plasmid DNA purification and sequencing may not be necessary. This study reveals the need for standardized biochemical and informatic procedures and database resources for consistent, reliable AMR genotyping to take full advantage of WGS in order to expedite patient treatment and track AMR genes within the hospital and community.
- Research Article
38
- 10.1016/j.scitotenv.2021.148259
- Jun 17, 2021
- Science of the Total Environment
Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry
- Research Article
- 10.3390/vetsci12080744
- Aug 8, 2025
- Veterinary Sciences
The objective of this work was to deliver a comprehensive genetic characterization of a collection of E. coli strains isolated from raw sheep milk. To complete our purpose, the technique of whole-genome sequencing, coupled with bioinformatics and phenotypic characterization of antimicrobial resistance, was performed. These Gram-negative, facultative anaerobic bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Shigella spp. and Salmonella spp. Genetic analysis was carried out on all strains (phylogram, sequence types, VFs, AMR genes, and pangenome). The results showed the presence of various genetic traits that are related to virulence factors contributing to their pathogenic potential. In addition, genes conferring resistance to antibiotics were also detected and confirmed using phenotypic tests. Finally, the genome of the E. coli strains was characterized by the presence of several mobile genetic elements, thus facilitating the exchange of various genetic elements, associated with virulence and antimicrobial resistance, within and beyond the species, through horizontal gene transfer. Contaminated raw sheep milk with pathogenic E. coli strains is particularly alarming for cheese production in artisan dairies.
- Research Article
1
- 10.3138/jammi-2021-0018
- Oct 28, 2021
- Journal of the Association of Medical Microbiology and Infectious Disease Canada
In 2004-2005, an outbreak of impetigo occurred at a correctional facility during a sentinel outbreak of methicillin- resistant Staphylococcus aureus (MRSA) in Alberta, Canada. Next-generation sequencing (NGS) was used to characterize the group A Streptococcus (GAS) isolates and evaluate whether genomic biomarkers could distinguish between those recovered alone and those co-isolated with S. aureus. Superficial wound swabs collected from all adults with impetigo during this outbreak were cultured using standard methods. NGS was used to characterize and compare all of the GAS and S. aureus genomes. Fifty-three adults were culture positive for GAS, with a subset of specimens also positive for MRSA (n = 5) or methicillin-sensitive S. aureus (n = 3). Seventeen additional MRSA isolates from this facility from the same time frame (no GAS co-isolates) were also included. All 78 bacterial genomes were analyzed for the presence of known virulence factors, plasmids, and antimicrobial resistance (AMR) genes. Among the GAS isolates were 12 emm types, the most common being 41.2 (n = 27; 51%). GAS genomes were phylogenetically compared with local and public datasets of invasive and non-invasive isolates. GAS genomes had diverse profiles for virulence factors, plasmids, and AMR genes. Pangenome analysis did not identify horizontally transferred genes in the co-infection versus single infections. GAS recovered from invasive and non-invasive sources were not genetically distinguishable. Virulence factors, plasmids, and AMR profiles grouped by emm type, and no genetic changes were identified that predict co-infection or horizontal gene transfer between GAS and S. aureus.
- Research Article
82
- 10.1038/s41598-020-63675-4
- May 4, 2020
- Scientific Reports
The increasing prevalence of antimicrobial resistance (AMR) is a significant threat to global health. More and more multi-drug-resistant bacterial strains cause life-threatening infections and the death of thousands of people each year. Beyond disease control animals are often given antibiotics for growth promotion or increased feed efficiency, which further increase the chance of the development of multi-resistant strains. After the consumption of unprocessed animal products, these strains may meet the human bacteriota. Among the foodborne and the human populations, antimicrobial resistance genes (ARGs) may be shared by horizontal gene transfer. This study aims to test the presence of antimicrobial resistance genes in milk metagenome, investigate their genetic position and their linkage to mobile genetic elements. We have analyzed raw milk samples from public markets sold for human consumption. The milk samples contained genetic material from various bacterial species and the in-depth analysis uncovered the presence of several antimicrobial resistance genes. The samples contained complete ARGs influencing the effectiveness of acridine dye, cephalosporin, cephamycin, fluoroquinolone, penam, peptide antibiotics and tetracycline. One of the ARGs, PC1 beta-lactamase may also be a mobile element that facilitates the transfer of resistance genes to other bacteria, e.g. to the ones living in the human gut.
- Research Article
1
- 10.1021/acs.est.5c00246
- Apr 9, 2025
- Environmental science & technology
The plastisphere is a potential contributor to global antimicrobial resistance (AMR), posing potential threats to public and environmental health. However, comprehensively quantifying the contribution of microplastics with different biodegradability to AMR is lacking. In this study, we systematically quantified AMR risk mediated by biodegradable and nonbiodegradable microplastics using abundance-based methods and a custom AMR risk ranking framework that includes antimicrobial resistance genes (ARGs) abundance, mobility, and host pathogenicity. Our results demonstrated that biodegradable microplastics exhibited higher AMR risk compared to that of nonbiodegradable plastics. Key resistance genes, including those for multidrug, bacitracin, and aminoglycoside resistance, were predominant. Machine learning analysis identified cell motility as the most significant signature associated with AMR risk, highlighting its potential role in promoting ARGs dissemination. In addition, biodegradable microplastics promoted oxidative stress and SOS responses, which likely enhanced horizontal gene transfer (HGT) and AMR. Metagenome-assembled genomes (MAGs) analysis uncovered the colocalization of microplastic degradation genes, ARGs, and virulence factors (VFs), further supporting the elevated risk in biodegradable plastisphere. The proximity of ARGs to mobile genetic elements (MGEs) suggests that microplastic degradation processes might favor ARGs mobility. These findings would contribute critical insights into AMR dissemination in the plastisphere, emphasizing the need for integrated environmental and public health strategies under the context of One Health.
- Research Article
33
- 10.1186/s13073-021-00893-z
- Jun 7, 2021
- Genome Medicine
BackgroundAntimicrobial-resistant bacteria and their antimicrobial resistance (AMR) genes can spread by hitchhiking in human guts. International travel can exacerbate this public health threat when travelers acquire AMR genes endemic to their destinations and bring them back to their home countries. Prior studies have demonstrated travel-related acquisition of specific opportunistic pathogens and AMR genes, but the extent and magnitude of travel’s effects on the gut resistome remain largely unknown.MethodsUsing whole metagenomic shotgun sequencing, functional metagenomics, and Dirichlet multinomial mixture models, we investigated the abundance, diversity, function, resistome architecture, and context of AMR genes in the fecal microbiomes of 190 Dutch individuals, before and after travel to diverse international locations.ResultsTravel markedly increased the abundance and α-diversity of AMR genes in the travelers’ gut resistome, and we determined that 56 unique AMR genes showed significant acquisition following international travel. These acquisition events were biased towards AMR genes with efflux, inactivation, and target replacement resistance mechanisms. Travel-induced shaping of the gut resistome had distinct correlations with geographical destination, so individuals returning to The Netherlands from the same destination country were more likely to have similar resistome features. Finally, we identified and detailed specific acquisition events of high-risk, mobile genetic element-associated AMR genes including qnr fluoroquinolone resistance genes, blaCTX-M family extended-spectrum β-lactamases, and the plasmid-borne mcr-1 colistin resistance gene.ConclusionsOur results show that travel shapes the architecture of the human gut resistome and results in AMR gene acquisition against a variety of antimicrobial drug classes. These broad acquisitions highlight the putative risks that international travel poses to public health by gut resistome perturbation and the global spread of locally endemic AMR genes.
- New
- Research Article
- 10.1371/journal.pone.0336375
- Nov 7, 2025
- PloS one
- New
- Addendum
- 10.1371/journal.pone.0336505
- Nov 7, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0336329
- Nov 7, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0333227
- Nov 6, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0335900
- Nov 6, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0335950
- Nov 6, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0335954
- Nov 6, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0336236
- Nov 6, 2025
- PloS one
- New
- Research Article
- 10.1371/journal.pone.0335955
- Nov 6, 2025
- PLOS One
- New
- Research Article
- 10.1371/journal.pone.0335033
- Nov 6, 2025
- PloS one
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.