Abstract

Hypertrophic cardiomyopathy (HCM), identified as a primary cause of sudden cardiac death (SCD), intertwines with pulmonary hypertension (PH) to amplify cardiovascular morbidity. This complex synergy poses significant therapeutic challenges due to the absence of drugs specifically targeting their concurrent manifestation. This study seeks to unravel the molecular intricacies linking HCM and PH, aiming to lay the groundwork for targeted therapeutic interventions. Through the analysis of gene expression profiles from datasets GSE36961 (HCM) and GSE113439 (PH) within the public data repository of Gene Expression Omnibus (GEO), this research systematically identified differentially expressed genes (DEGs), conducted extensive functional annotations, and constructed detailed protein-protein interaction (PPI) networks to uncover crucial hub genes. Further, co-expression analyses, alongside drug prediction and molecular docking simulations, were employed to pinpoint potential therapeutic agents that could ameliorate the combined pathology of HCM and PH. Our comprehensive analysis unearthed 79 DEGs shared between HCM and PH, highlighting fourteen as pivotal hub genes. Validation across three additional datasets (GSE35229, GSE32453, and GSE53408) from GEO accentuated secreted phosphoprotein 1 (SPP1) as a key gene of interest. Remarkably, the study identified tacrolimus, ponatinib, bosutinib, dasatinib, doxorubicin, and zanubrutinib as promising drugs for addressing the dual challenge of HCM and PH. The findings of this investigation shed light on the genetic underpinnings of HCM and PH's simultaneous occurrence, emphasizing the central role of SPP1 in their pathogenesis. The identification of six candidate drugs offers a hopeful vista for future therapeutic strategies targeting this complex cardiovascular interplay, marking a significant stride towards mitigating the compounded morbidity of HCM and PH. Future mechanistic and clinical studies are warranted for the investigation of this potential target and therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.