Abstract

With the perpetuation of soil salinization, it is imperative to improve the salt and alkaline tolerance of crops. Sorghum bicolor, a C4 crop, is often grown in semiarid areas due to its high tolerance of various abiotic stresses. Whether to improve the resistance of the sorghum itself or that of other crops, it is necessary to understand the response of sorghum under saline-alkali stress. An integrative analysis of the metabolome and transcriptome of sorghum under normal conditions and treatments of moderate and severe saline-alkali stress was performed. Among the different accumulated metabolites (DAMs) and differentially expressed genes (DEGs), flavonoid-related DAMs and DEGs were clearly changed. The level of flavonoids was increased under saline-alkali stress, and the change in flavonoids was dynamic as to whether total flavonoids or most flavonoid components accumulated more under moderate saline-alkali stress compared to severe stress. Some flavonoid metabolites were significantly correlated with the expression of flavonoid biosynthesis genes. MYB transcription factors may also contribute to the regulation of flavonoids levels. These findings present the dynamic changes and possible molecular mechanisms of flavonoids under different saline-alkali stresses and provide a foundation for future research and crop improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.