Abstract
Earlier (2000) the authors introduced the notion of the integral with respect to the Euler characteristic over the space of germs of functions on a variety and over its projectivization. This notion allowed the authors to rewrite known definitions and statements in new terms and also turned out to be an effective tool for computing the Poincar´e series of multi-index filtrations in some situations. However, the “classical” (initial) notion can be applied only to multi-index filtrations defined by so-called finitely determined valuations (or order functions). Here we introduce a modified version of the notion of the integral with respect to the Euler characteristic over the projectivization of the space of function germs. This version can be applied in a number of settings where the “classical approach” does not work. We give examples of the application of this concept to definitions and computations of the Poincar´e series (including equivariant ones) of collections of plane valuations which contain valuations not centred at the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.