Abstract

Ferroptosis has emerged as a significant factor in the development of bronchopulmonary dysplasia (BPD). Nevertheless, our understanding of the potential involvement of ferroptosis-related genes (FRGs) in BPD remains incomplete. In this study, we leveraged the Gene Expression Omnibus (GEO) database to investigate this aspect. We identified 20 differentially expressed FRGs that are associated with BPD, shedding light on their potential role in the condition.LASSO along with SVM-RFE algorithms found that 12 genes: MEG3, ACSL1, DPP4, GALNT14, MAPK14, CD82, SMPD1, NR1D1, PARP3, ACVR1B, H19, and SLC7A11 were closely related to ferroptosis modulation and immunological response. These genes were used to create a nomogram with good predictive power and were found to be involved in BPD-linked pathways. In addition, the marker genes-based prediction model performed well in external validation data sets. The study also showed a significance between BPD and control samples in terms of immune cell infiltration. These findings may help improve our understanding of FRGs in BPD and lead to the development of more effective immunotherapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.