Abstract

BackgroundObesity is a complex disorder associated with an increased risk of developing several comorbid chronic diseases, including postmenopausal breast cancer. Although many studies have investigated this issue, the link between body weight and either risk or poor outcome of breast cancer is still to characterize. Systems biology approaches, based on the integration of multiscale models and data from a wide variety of sources, are particularly suitable for investigating the underlying molecular mechanisms of complex diseases. In this scenario, GEnome-scale metabolic Models (GEMs) are a valuable tool, since they represent the metabolic structure of cells and provide a functional scaffold for simulating and quantifying metabolic fluxes in living organisms through constraint-based mathematical methods. The integration of omics data into the structural information described by GEMs allows to build more accurate descriptions of metabolic states.ResultsIn this work, we exploited gene expression data of postmenopausal breast cancer obese and lean patients to simulate a curated GEM of the human adipocyte, available in the Human Metabolic Atlas database. To this aim, we used a published algorithm which exploits a data-driven approach to overcome the limitation of defining a single objective function to simulate the model. The flux solutions were used to build condition-specific graphs to visualise and investigate the reaction networks and their properties. In particular, we performed a network topology differential analysis to search for pattern differences and identify the principal reactions associated with significant changes across the two conditions under study.ConclusionsMetabolic network models represent an important source to study the metabolic phenotype of an organism in different conditions. Here we demonstrate the importance of exploiting Next Generation Sequencing data to perform condition-specific GEM analyses. In particular, we show that the qualitative and quantitative assessment of metabolic fluxes modulated by gene expression data provides a valuable method for investigating the mechanisms associated with the phenotype under study, and can foster our interpretation of biological phenomena.

Highlights

  • Obesity is a complex disorder associated with an increased risk of developing several comorbid chronic diseases, including postmenopausal breast cancer

  • Triacylglycerols extraction (TAG) and glucose (GLU) fluxes clinically measured in soft adipose tissue (SAT) of obese subjects at six different time points were used to set the lower and upper bounds of the corresponding metabolites of the model

  • Since in [26] the defined objective was Lipid droplet (LD) production, we evaluated the agreement of the two approaches on this flux

Read more

Summary

Introduction

Obesity is a complex disorder associated with an increased risk of developing several comorbid chronic diseases, including postmenopausal breast cancer. Systems biology approaches, based on the integration of multiscale models and data from a wide variety of sources, are suitable for investigating the underlying molecular mechanisms of complex diseases In this scenario, GEnome-scale metabolic Models (GEMs) are a valuable tool, since they represent the metabolic structure of cells and provide a functional scaffold for simulating and quantifying metabolic fluxes in living organisms through constraint-based mathematical methods. Several hormonal and metabolic pathways have been investigated to understand the effects of obesity on BC, this connection has not been well characterised so far, and oncologic therapy programs rarely involve weight and lifestyle control Both the rise of omics sciences and the constant development of the related technologies fostered the research of new approaches based on the integration of data coming from different sources, with the aim to investigate the relationships and the interplay among the various biological molecules [9]. The workflow described in our study integrates gene expression data of Luminal-A BC lean and obese subjects into a published reconstructed GEM of the human adipocyte, with the aim to generate conditionspecific networks in which gene abundance regulates the metabolic fluxes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.