Abstract

Multivariate Pattern Analysis (MVPA) is frequently used to decode cognitive states from brain activities in fMRI study. Due to the discrepancy between sample and feature size, MVPA methods are suffered from the overfitting problem. This paper addresses this issue by introducing sparse modelling along with its advanced decoding method, Compressive Sensing (CS). As brain voxels have highly correlated in spatial domain, the prerequisite of CS methods are not well satisfied. We therefore propose a novel MVPA method to integrate linear Sparse Bayesian Learning (i.e. Bayesian Compressive Sensing) with random subspace method. Benefiting from the random subspace method, spatial correlation and feature-to-sample ratio are largely reduced. The experimental results from a real fMRI dataset demonstrate that our method has distinct prediction power compared to three other popular MVPA methods, and the detected relevant voxels are located in informative brain areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.