Abstract

Evacuation is a time critical process in which the highest priority is to get those people who may be affected by a disaster out of the danger zone as fast as possible. For disaster-prone areas, authorities often distribute evacuation plans well in advance, or encourage the population to prepare themselves for eventual disasters. This paper presents an approach to such planning ahead for evacuation that tightly couples optimization and traffic simulation in order to determine optimal evacuation time and exit from the area for each evacuee. In this paper, we discuss the approach’s properties and illustrate its performance using two case studies of wildfire-prone areas in the state of Victoria, Australia. The results show that our approach can lead to significant improvements when compared to ad-hoc evacuation, but these improvements also strongly depend on population density and road network topology. More generally, our research highlights the significant benefits of tightly coupling optimization and simulation for evacuation modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.