Abstract
In this paper, we present explicit integration formulas and algorithms for computing integrals of polynomials over an arbitrary tetrahedron in Euclidean three-dimensional space. Two different approaches are discussed: the first algorithm/formula is obtained by mapping the arbitrary tetrahedron into a unit orthogonal tetrahedron, while the second algorithm/formula computes the required integral as a sum of four integrals over the unit triangle. These algorithms/formulas are followed by an example for which we have explained the detailed computational scheme. The numerical result thus found is in complete agreement with the previous work. Further, it is shown that the present algorithms are much simpler and more economical as well in terms of arithmetic operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.