Abstract

Recent reports demonstrate that hybrid energy harvesting devices can efficiently convert ubiquitously available but mostly unexploited ambient energies (e.g., mechanical, chemical, thermal, solar) into usable power that can potentially support a new generation of self-powered electronic systems. In this paper, we present a hybrid organic/inorganic nanogenerator on shim substrates, which integrates both piezoelectric and triboelectric components based on inorganic p-n junction ZnO nanostructures and nanostructured organic polytetrafluoroethylene (PTFE) film, respectively. In this design, individual components can be operated independently or concurrently. Moreover, when operated concurrently, component performance is mutually enhanced, enabling more efficient conversion of mechanical energy into electrical energy in a single press-and-release cycle. When triggered with 25 Hz frequency and 1 G acceleration of external force, the piezoelectric nanogenerator (PENG) component generates a peak-to-peak output voltage of 34.8 V, which is ∼3 times higher than its output when it acts alone. Similarly, the triboelectric nanogenerator (TENG) component generates a peak-to-peak output voltage of 356 V under the same conditions, which is higher than its initial output of 280 V when acting alone. The nanogenerator unit produces an average peak output voltage of 186 V, current density of 10.02 µA/cm2, and average peak power density of 1.864 mW/cm2 when operated in the hybrid configuration. The device can even produce an average peak-to-peak voltage of ~160 V from normal hand movement when placed under a wristband fitness tracker, and ~580 V from human walking when placed within the walker's shoe. The device has been demonstrated to charge commercial capacitors up to a few volts within several seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.