Abstract

Porphyrin-based porous organic polymers are highly potential candidates for cancer theranostics. However, un-controllable particle size and unclear photoactive mechanisms have been deemed to be “Achilles’ heels” for their biomedical application. Herein, a facile self-template strategy has been applied to integrate two types of porous materials to build the MOF@POP-PEG nanocomposite (named HUC-PEG). As-synthesized HUC-PEG exhibited controllable particle shape and size, good biocompatibility, and better colloidal stability. Importantly, synergy “0 + 1 > 1” interface effects have been demonstrated to simultaneously enhance both the generation of more singlet oxygen (1O2) for photodynamic therapy (PDT) and local hyperthermia for photothermal therapy (PTT), thus to achieve favorable proliferation inhibition of tumor cell both in vitro and in vivo. Moreover, the strong X-ray attenuating ability of Hf element and excellent photothermal conversion efficacy endow this nanocomposite with computed tomography (CT)/photothermal imaging functions. We believe that our ingenious design may open a new horizon for the preparation of nanoscale POP-based therapeutic agents and also realize a paradigm shift in the understanding of photoactive mechanism in porous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.