Abstract
Monitoring water quality is essential to guaranteeing the sustainability and safety of water supplies. Conventional techniques for evaluating the quality of water might be laborious and may not be able to provide results instantly. The suggested system makes use of a wide range of biosensors to assess important aspects of water quality, including microbial activity, pH, dissolved oxygen, and chemical pollutants. Following collection, the data are analysed using recurrent neural networks (RNNs). An RNN is trained to identify patterns, correlate information from several sensors, and forecast trends in water quality. Early detection of problems with water quality, prompt reaction to possible contaminants, and flexibility in response to changing environmental conditions are some benefits of this integrated approach. The system biosensors for enhanced water quality monitoring (BEWQM) are a useful tool for long-term water quality monitoring and management because of its learning characteristics, which allow it to continuously improve its accuracy and performance over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.