Abstract
This paper introduces a novel modelling method for variation propagation calculation of 3-D assemblies taking into account geometric variation and part deformation, which are neglected in most models in tolerance analysis. Initially, numerical studies are carried out in order to illustrate the characteristics of strain distribution in components and contact forces on the mating surfaces of a 3-D assembly. According to these characteristics, a linear equivalent model using springs to represent the elastic mating surfaces with geometric variation was presented. Then, the equilibrium criterions corresponding to actual contact situations and iterative searching algorithm of the equilibrium status of contacting were developed. The proposed modelling and calculation method were finally applied to the assembly of two machined parts, on which finite-element analyses and experimental tests were conducted to validate the effectiveness and accuracy. This linear contact model also shows an important advantage on modelling and calculating efficiency, which enable the practical application to variation propagation calculation in both tolerance design and assembly process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.