Abstract

PurposeNotable energy losses and voltage deviation issues in low-voltage radial distribution systems are a major concern for power planners and utility companies because of the integration of electric vehicles (EVs). Electric vehicle charging stations (EVCSs) are the key components in the network where the EVs are equipped to energize their battery. The purpose of this paper is coordinating the EVCS and distributed generation (DG) so as to place them optimally using swarm-based elephant herding optimization techniques by considering energy losses, voltage sensitivity and branch current as key indices. The placement and sizing of the EVCS and DG were found in steps.Design/methodology/approachThe IEEE 33-bus test feeder and 52-bus Indian practical radial networks were used as the test system for the network characteristic analysis. To enhance the system performance, the radial network is divided into zones for the placement of charging stations and dispersed generation units. Balanced coordination is discussed with three defined situations for the EVCS and DG.FindingsThe proposed analysis shows that DG collaboration with EVCS with suitable size and location in the network improves the performance in terms of stability and losses.Research limitations/implicationsStability and loss indices are handled with equal weight factor to find the best solution.Social implicationsThe proposed method is coordinating EVCS and DG in the existing system; the EV integration in the low-voltage side can be incorporated suitably. So, it has societal impact.Originality/valueIn this study, the proposed method shows improved results in terms EVCS and DG integration in the system with minimum losses and voltage sensitivity. The results have been compared with another population-based particle swarm optimization method (PSO). There is an improvement of 18% in terms of total power losses and 9% better result in minimum node voltage as compared to the PSO technique. Also, there is an enhancement of 33% in the defined voltage stability index which shows the proficiency of the proposed analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.