Abstract
The advancement of artificial intelligence has brought visible-light positioning (VLP) to the forefront of indoor positioning research, enabling precise localization without additional infrastructure. However, the complex interplay between light propagation phenomena and environmental factors in indoor spaces presents significant challenges for VLP systems. Additionally, the pose of the light-emitting diodes is prior unknown, adding another layer of complexity to the positioning process. Dynamic indoor environments further complicate matters due to user mobility and obstacles, which can affect system accuracy. In this study, user movement is simulated using a constructed dataset with systematically varied receiver positions, reflecting realistic motion patterns rather than real-time movement. While the experimental setup considers a fixed obstacle scenario, the training and testing datasets incorporate position variations to emulate user displacement. Given these dataset characteristics, it is crucial to employ robust positioning techniques that can handle environmental variations. Conventional methods, such as received signal strength (RSS)-based techniques, face practical implementation hurdles due to fluctuations in transmitted optical power and modeling imperfections. Leveraging machine learning techniques, particularly regression-based artificial neural networks (ANNs), offer a promising alternative. ANNs excel at modeling the intricate relationships within data, making them well-suited for handling the complex dynamics of indoor lighting environments. To address the computational complexities arising from high-dimensional data, this research incorporates principal component analysis (PCA) as a method for reducing dimensionality. PCA eases the computational burden, accelerates training speeds by normalizing the data, and reduces loss rates, thereby enhancing the overall efficacy and feasibility of the proposed VLP framework. Rigorous experimentation and validation demonstrate the potential of employing principal components. Experimental results show significant improvements across multiple evaluation metrics for a constellation comprising eight LEDs mounted in a rectangular structure measuring a room dimension of 12 m × 18 m × 6.8 m, with a photodiode (PD) receiver. Specifically, the mean squared error (MSE) values for the training and testing samples are 0.0062 and 0.0456 cm, respectively. Furthermore, the R-squared values of 99.31% and 94.74% for training and testing, respectively, signify a robust predictive performance of the model with low model loss. These findings underscore the efficacy of the proposed PCA-ANN regression model in optimizing VLP systems and providing reliable indoor positioning services.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have